Measurement of Directed Flow via three particle azimuthal correlations at RHIC-PHENIX

Hiroshi Masui For the PHENIX Collaboration JPS meeting

Outline

- Azimuthal anisotropy
- Theoretical prediction of Directed Flow
- PHENIX experiment
- Analysis method
- Results
- Summary and Outlook

Azimuthal anisotropy Directed/Elliptic Flow

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi)]\right) \quad \begin{array}{l} v_n \text{ (n=1,2): strength of directed/elliptic flow} \\ \phi : \text{ azimuthal angle of detected particles} \\ \psi : \text{ azimuthal angle of reaction plane} \end{array}$$

Anisotropic Flow

- Directed/Elliptic Flow
- Sensitive to the system evolution at early time and the equation of state.
- Might be used to search for new state of matter (QGP) and phase transition.

Theoretical prediction of Directed Flow (v₁)

- Anti-flow/3rd flow component, with QGP
 - v₁ flat at mid-rapidity.

Brachmann, Soff, Dumitru, Stocker, Maruhn, Greiner Bravina, Rischke, PRC 61 (2000) 024909. L.P. Csernai, D. Roehrich PLB 458, 454 (1999) M.Bleicher and H.Stocker, PLB 526,309(2002)

- v₁ wiggle, no QGP necessary
 - Baryon stopping
 - Positive space-momentum correlation

R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL (84) 2803(2000)

Experimental Setup PHENIX Detector

- Minimum Bias Trigger
 - BBC (Beam Beam Counter)
- Collision Vertex
 - BBC
- Centrality
 - BBC, ZDC (Zero Degree Calorimeter)
- Reaction Plane
 - BBC, DC (Drift Chamber),PC (Pad Chamber)
- Tracking / Momentum
 - DC, PC

Analysis method

Reaction Plane method v₁{RP₁}, v₂{RP₂}

$$\langle e^{in(\phi-\Psi)} \rangle = v_n$$

Two particle + Reaction Plane v₁{RP₂}

$$\langle e^{i(\phi_a + \phi_b - 2\Psi_2)} \rangle = V_1^a V_1^b \langle \cos[2(\Psi_{true} - \Psi_2)] \rangle$$

Three particle correlation v₁{3}

$$\langle e^{i(\phi_a + \phi_b - 2\phi_c)} \rangle = v_1^a v_1^b v_2^c$$

BBC

Basic fomula of three particle correlation method N. Borghini, P.M. Dihn, J-Y. Ollitrault, PRC 014905 (2002)

Central arm

Non-flow contribution

$$\left\langle \cos(\phi_a - \psi_2)\cos(\phi_b - \psi_2) - \sin(\phi_a - \psi_2)\sin(\phi_b - \psi_2) \right\rangle \approx v_{1a}v_{1b}v_2$$
In-plane component
Flow + Non-flow
Out-of-plane component
Non-flow

- Three particle correlation (or two particle + reaction plane) is less sensitive to non-flow contribution than reaction plane method.
- Takes advantage of the knowledge about the reaction plane derived from the large elliptic flow
 - minimizes non-flow effect.
- Can measure the sign of v₂.

Elliptic Flow v₂{RP₂}

Comparison of Mid-rapidity ($|\eta|$ <0.35) and Forward rapidity (3< $|\eta|$ <4)

- Elliptic Flow
 measurement has
 been done by the
 standard reaction
 plane method @ midrapidity and forward
 rapidity.
- Used as input for 3 particle correlation method.

Elliptic Flow Comparison of PHENIX to other experiments

PHENIX v₂ is consistent with PHOBOS and STAR results.

Directed Flow $(3<|\eta|<4)$

- \bigcirc Flow + Non-flow (v₁{RP₁})
- Non-flow
- Flow
- $v_1{3}$
- $\mathbf{v}_1\{\mathsf{RP}_2\}$

- Comparison of 3 independent analysis.
 - v₁{RP₁} subtracted non-flow contribution.
 - $v_1\{RP_2\}$
 - $-v_{1}\{3\}$
- Very good agreement within the error bars.

Directed Flow Comparison of PHENIX and STAR

- Integrated Directed Flow in 10 – 70 % centrality bins.
 - Sign of v₁ is defined by hand.
 - Systematic errors are shown by color bands.
- Comparison of PHENIX results to STAR v₁{3}.
 - All of the PHENIX results are consistent with STAR v₁{3}.

Summary

Elliptic Flow

- First measurement of Elliptic Flow (v₂) in Forward rapidity (3<|η|<4)
 @ PHENIX.
 - Consistent with PHOBOS and STAR.

Directed Flow

- First measurement of Directed Flow (v₁) @ PHENIX.
- v₁{RP₂} and v₁{3} are less sensitive to non-flow contribution than v₁ from the standard reaction plane method.
- The results of v₁ @ PHENIX is consistent with v₁{3} from STAR experiments.
- The results of $v_1\{RP_2\}$ and $v_1\{3\}$ indicate that v_2 @ RHIC is *in-plane* $(v_2 > 0)$.

16ch. PMT "M16"

WLS fibers Scintillator strips

Shower Maximum Detector (SMD)

Outlook

- Directed event plane determined @ SMD
 - Better resolution.
 - Less sensitive to non-flow contribution.
 - Opposite direction between BBC and SMD ↔
 Directed Flow from Participant (pion) and
 Spectator (neutron).

Back up

In-plane Elliptic Flow

